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Abstract

A multi-threaded processor has several sets of registers, and therefore can keep several
tasks in a state of being ready to run. This ability to combine several independent in-
struction streams prevents such a processor from getting systematically blocked upon every
cache miss involving a long memory access. Unfortunately, upon a cache miss, conventional
caches remain unavailable for further processor requests until the cache miss is completely
processed. This of course defeats the purpose of this kind of architecture, since memory ac-
cesses performed by the other threads might hit in the cache and therefore succeed. Instead,
the processor stays idle. This article describes a cache architecture capable of servicing
processor requests even while a memory access is currently being performed. For further
efficiency reasons, this cache communicates with the memory via a split transaction bus.
These two features increase substantially the amount of state information to be kept along
with each cache entry, making the cache automaton and protocol quite complicated. We
detail the kind of consistency provided by our cache, along with a proof of its validity. As
very little theoretical support exists for this kind of proof, we also present a formalism that
we developed in the course of this project, and which is suitable for expressing statements
of consistency. - f 4 1-'(
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1 Introduction

In the past decade, major architectural achievements aimed at building fast processing elements
were accomplished with pipelining and parallelization . The current expertise in machine archi-
tecture has a well-balanced knowledge about the design of highly pipelined processors and it
appears that the major bottleneck in building fast computers is in providing memory systems
that are capable of matching the speed of these fast processors. This problcm has been exten-
sively studied and is solved, in the case of single processor architecture, with the use of fast cache
memories [11]. These cache memories appear to be efficient in matching processor speed as long
as a memory access hits in the cache but do not improve anything when the access misses. In
conventional sequential architecture the probability of a cache miss can be rendered arbitrary
small by building sufficiently large cache memories, and it turns out that in most applications,
the speed ratio between the processor and the main memory is such that rather small caches
(4 kilowords) axe sufficient to cache up to 4 megawords of memory and to achieve a very high
processor utilization (over 99 %).

The next step in making faster machines is naturally the use of several such processor/cache
elements organized in a way that allows them to work in parallel. A big class of such parallel
architectures is based on a model of computation that relies on the concept of shared memory.
In this model, several processors work concurrently on the same set of data, using dedicated
memory locations for synchronization purposes. It appears that the performance of such systems
drops very rapidly as the number of processors grows for three main reasons:

* The need for synchronization variables implies that the corresponding memory locations
cannot usually be cached. No matter how big the caches are, and how clever the cache
management is, there will always be a minimum number of cache misses due to broadcast-
ing of synchronization operations.

" The fact that data are shared means that a piece of data is very likely to be requested
by different processing elements, and therefore increases the traffic between memory and
caches.

" The communication medium is now also much more critical, since a given memory access
now needs to compete with other processor requests, and therefore the communication
delays between caches and memory become quite a bit higher.

To summarize, cache misses cannot be rendered arbitrarily rare any more, and in addition the
delays induced by each cache miss are now substantially higher. To solve this new problem,
three areas of computer architecture were extensively explored by the research community:

* Performances of efficient communication medium such as crossbar networks were studied
and analyzed [9].

* Clever cache management schemes, such as the snoopy cache [4], were developed to reduce
the traffic due to shared data.

a New processor architectures were developed using techniques such as pipelining and mem-
ory prefetching - or more recently multi-threading [12] - to allow the processor to work in
parallel with a memory access, thereby diminishing the idle time due to non-cache accesses.

Interesting results have been obtained individually in each of these areas; nevertheless, when it
comes to combining them into an efficient design they appear to be rather incompatible. The
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simple and efficient snoopy cache works well only with a bus as a communication medium, while
an efficient switching network requires a rather complicated directory-based cache management
scheme [1].

In the Multilisp [5] project, we started by the design of the processor. We found the idea
of multi-threaded architecture particularly elegant as an alternative to conventional pipelined
design for the following two reasons:

" Instead of filling up the pipeline with instructions from the same stream, we fill it with
instructions of different streams. In the conventional pipeline, if an instruction is delayed
by a long memory access, the amount of work (instructions) available to the processor until
it gets suspended waiting for the memory access to complete is no greater than the length
of the pipeline. In a multi-threaded architecture, this is no longer true. The processor
finds available work not only in its pipeline but also by switching to a different task, which
means that the available stock of potentially executable instructions is now bounded above
by the product of the pipeline's length and the number of ready-to-run task frames. It
thereby achieves more parallelism between processor and memory.

" In a conventional design, these multiple threads would be executed by several processors,
each one being attached to its own private cache. Of course, this avoids the problem of
having several threads competing for the same cache slot and for that reason decreases
the cache miss ratio. On the other hand, the effect of shared data being communicated
between caches tend to increase the cache miss ratio. An intelligent sharing of cache space
according to the needs of processes, combined with an effective management policy, can
yield a higher hit ratio [13]. Furthermore, even with poor management of the competition
for cache slots, higher processor utilization can be achieved [6].

Although multi-threaded processors are appealing for the previously presented reasons, cur-
rent cache expertise does not allow actually taking advantage of their features. The purpose of
our work was to study suitable caches, carefully isolating the problems that such an architec-
ture induces. It turned out that the management of such caches requires a fairly complicated
protocol to ensure coherency. In the course of our design research we therefore found the need
for efficient ways of proving the correctness of an implementation. Although this problem is not
new, it is only recently that people actually tried to specify complicated multi-processor archi-
tectures and deal with correctness proofs. We found that the classical formulations for various
cache coherency properties [8] stated in natural language, were difficult to apply to complicated
designs, particularly because there is no simple, accurate way to describe such designs using
natural language. We therefore introduced a theoretical framework, in which one can express in
a unified way all classical coherency properties. We then developed a methodology for proving
statements within this framework, and showed how it is suitable for proving the correctness of
cache coherency protocols.

In the section below we present the various problems that we had to solve for the design of
our cache, and relate them to already known problems. We synthesize a variety of solutions into
achieving our goal and give an overview of the resulting cache architecture. This is immediately
followed by a section which describes precisely both the architecture and the cache management
protocol. Next we state in what sense our design is correct and part of the proofs are detailed.
This is followed by the presentation of our formalism along with an explanation of our moti-
vations. In the last section of this paper, our proof of correctness based on this formalism is
completed.

4



2 Overview of the cache

The ability to issue a memory request in advance, so that the time interval induced by the
memory delay can be used by the processor to make progress on the execution of some other
instructions, is common to both pipelined and multi-threaded processors. In conventional caches,
as soon as the access generates a cache miss, the associated processor is held, preventing it from
making any further progress on other instructions. This is of course rather unfortunate for the
performance of the system, but has the advantage of yielding a quite simple cache design:

* There is no need for the cache to keep track of outstanding requests.

* There is no need for sophisticated management to handle the inconsistencies that may
occur if a second request modifies the location involved in the outstanding memory access.
All accesses are well serialized.

In the past few years, people have studied possible improvements to this situation with the
introduction of buffered memory accesses [3]. Write and read buffers are used in order to make
the cache lock-up-free . It was shown in [3] that buffering was particularly efficient for highly
pipelined machines and for high miss rates. In a second paper [10] the same authors show that
the consistency conditions are not that easy to meet, and conclude that access buffering can be
allowed, but invalidation buffering (in snoopy cache type of protocols) must be forbid. They
propose a protocol that relies upon adjoining a new state to each entry, that allows or disables
further accesses: If an entry is being updated, any further reads or writes by the processor must
be rejected or deferred until the update is completed.

In our project we were not only interested in taking advantage of buffering, but also of a
better communication mediun,, and therefore investigated the consequences of using a bus with
split transactions. Such a bus has several advantages:

" A bus transaction is composed of an information transfer phase and a decoding phase. The
decoding phase, which typically includes an access to a memory circuit, is the most time
consuming operation and does not require the use of the bus itself. In a split-transaction
bus it is possible to overlap the decoding phase with other transfers and thereby increase
the bandwidth. This will actually increase the performance by a factor of at least two,
therefore allowing a larger number of connected processors.

" A split-transaction bus allows a pipelined protocol and therefore allows pipelining the
treatment of bus transactions, making the decoding phase in particular, non-critical. The
cache hardware is then simpler and more efficient.

On the other hand, substantial complexity is added to the cache coherency protocol. Bus
transactions are no longer atomic, and therefore the state of a line in a cache may change during
the processing of the bus operation. For instance, if a cache C1 owns a dirty copy of the location
X, and cache C 2 requests this same piece of data, then C1 must write its copy back. The copy-
back operation is not immediate but takes some cycles, during which any further requests to
this same location traveling oii the bus must be intercepted until the write-back is completed.
This requires upgrading the entry state information to allow the cache automaton to behave
properly. We have attempted to exhaust most possible variations on the cache protocol using a
split transactions bus. It opens the door for many small optimizations that we carefully studied,
reaching the conclusion that most of them were not worth the added complexity. The next
subsection gives an overview of the cache architecture, and is followed by a paragraph that gives
a precise description of our cache protocol, along with a list of the acceptable optimizations.
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Figure 1: cache architecture block diagram

2.1 The architecture of the cache

A memory access issued by the processor is composed of an operation (Read, Write), an address,
and possibly a piece of data. This is sent in one cycle to the cache as a token, and the processor
then moves its attention to another instruction. This memory token may either hit in the cache,
in which case an acknowledgment token is sent to the processor, or may miss, in which case
a token is sent toward the memory via the bus. This token eventually comes back from the
memory, appears on the bus, and is caught by the corresponding cache. It is then handled and
a new token is produced and sent to the processor as an acknowledgment.

To accommodate this behavior we have developed a cache which, seen from the outside, has
two input ports and two output ports (one pair on the processor side, and the other pair on
the bus side) and a small memory array. Attached to the bus output port, a fifo queue allows
tokens to be sent out without worrying about a possibly busy bus. Another small fifo buffer is
put on the processor input path to accommodate the situation where, at a given cycle, a bus
acknowledgment token arrives while the cache is responding to a request that hits in the cache
memory. Each memory address X maps to a cache entry denoted X which records the address
and data cached, as well as the current state of the cache entry and some additional bits e.g.,
to help with synchronization or garbage-collection. In the rest of the paper no assumption will
be made about the memory- to- cache mapping; the cache can be a one-way associative cache as
well as a many-way associative cache. Nevertheless we will use as a convention that XC represents
any address that maps onto the same entry as X, and X is any such address that will require
a cache replacement (in a one-way associative cache, X = X - {X}). The architecture and the
operation of the cache itself can be described in terms of the following three modules:

e A local part in charge of processing requests performed by the processor, essentially by
doing a cache lookup. As a result of this processing, this module may either send a
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request to the cache manager or simply send a token to the fifo queue attached to the bus
output port in order to perform a memory access.

" A global part which constantly watches the bus for acknowledgments or for requests from
other processors. Each bus transaction therefore requires a cache lookup. This module
may then either send a token directly onto the bus (bypassing the fifo buffer) along witn
the activation of the Kill signal (this happens when it detects a request to a datum that
wasn't yet written back to the memory), or send a request to the cache manager to update
an entry. This module may also activate a Shared signal, to notify the other processors
that the data being acknowledged on the bus is shared.

" A cache manager which gets requests from both the local part and the global part. It per-
forms a local operation on the cache array (Read, Write, State change) and if needed sends
tokens to the Local part or the Global part which then propagate them to the processor
fifo or to the bus fifo.

At any given clock cycle, the cache can get a request from both the processor and from the bus.
In fact, at each active bus cycle the global part of the cache (which constantly observes the bus)
must access the cache array in order to determine its action. Then it may modify the cache
state (the previous lookup and this modification must occur atomically, for instance in the same
cycle). In parallel with the treatment of bus transactions, the processor may read or modify an
entry in the cache. These three actions that potentially occur within the same clock cycle must
nevertheless be logically serialized at the cache array level and are therefore processed in the
following order: First the cache entry is read by the snoopy unit, then a possible modification is
reported by the same unit, finally the processor request is handled. The actual hardware may
of course perform all this in parallel as long as the logical sequence is preserved.

2.2 Description of the cache protocol

In order to take proper actions upon local part and global part requests, the cache manager
must maintain some information about the current consistency state of each cache datum. The
conventional snoopy cache protocol requires the three following fundamental states to describe
a given cache entry:

" Private and clean state (PC) which means that the data is held locally and is an exact
copy of the corresponding location in memory. The associated cache is the only one that
has a copy. The corresponding processor can therefore perform all the operations locally.

" Private and dirty (PD) which means that the data is held locally, and was modified by the
associated processor. The copy is therefore not consistent with the one in memory. The
-ssociated cache is the only one that caches this location. The corresponding processor
can still perform all the operations locally, but the cache is responsible for updating the
memory as soon as another processor wants to read this location.

" Shared (S) which means that the data is held locally and in some other cache as well. The
copy is also consistent with the corresponding memory location. The attached processor
can still perform locally the Read operations but all Writes must be broadcast.

The fact that memory Writes and Reads are buffered requires adjoining the following state:
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* Wait for bus transaction (WB) which means that the cache entry is being written to or
read from the memory, and that a bus transaction was requested but the memory access
has not yet traveled on the bus. Any further request to this cache entry, from the attached
processor, is rejected until the corresponding acknowledgment token arrives.

Since we allow optimizing the memory accesses by observing and using the acknowledgment
tokens which appear on the bus and match outstanding memory requests that are still sitting in
the output buffer, we need the following state that indicates whether an access can be optimized
or not.

• Wait for a memory acknowledgment (WA) which means that the memory access has trav-
eled on the bus, but the memory acknowledgment wasn't yet observed on the bus. Any
further request to this cache entry, from the attached processor, is rejected and the cache
takes advantage of any acknowledgment token that appears on the bus and matches the
address of this outstanding memory access.

The fact that transactions are split implies that write-backs are neither atomic nor instantaneous,
therefore requiring this intermediate state.

* Wait for update acknowledgement (WU) which means that an update access was sent on
the bus but the corresponding memory acknowledgment hasn't appeared yet. Any further
request to this entry that appears on the bus must be cancelled (by activating the kill
signal), and any request to this entry from the attached processor is rejected.

Finally, the obvious empty or invalid state (E) reflects the fact that at startup time a cache
entry contains no valid data. Since our protocol uses no invalidations, the (E) state is never
reentered. The above-listed states determine the actions to be taken by the cache manager upon
occurrence of processor or bus events. The complete behavior of the cache is therefore fully
specified by the description of its responses to each event or token. A token may induce either
a state change (see figure 2), or an action such as the creation of a new token (see table). There
are mainly two kinds of tokens:

* Requests from the attached processor, which are Reads or Writes to a given location, will
be denoted by P : ROX or Pi : W@X, which stands for processor Pi (by convention Pi
means the attached processor, P stands for any processor but the attached one and Pk
stands for any processor) reading (respectively writing) at (to) location X. As a convention,
X will represent the address that is cached, X any address that causes a replacement of
X's cache entry, and R stands for any address that maps to the same cache entry as X.

* Tokens that travel on the bus, which can be either requests from another processor (Pj
R, WOX) or write-back requests (updates) from another processor (Pj : U@X) or, more
likely, acknowledgment tokens Pk : Ra, Wa, UaQX representing for a read/write/update
acknowledgement tokens respectively. This notation is extended to reflect whether the
Shared signal is actived or not upon the observation of the acknowledgment token. This is
done by adding a ".s" (shared) or ".p" (private = not shared) modifier at the end of the
token notation string.

We use this notation extensively in the rest of this paper. The cache manager is then completely
specified with the transition diagram represented in figure 2 and the table of actions that sum-
merizes the operations triggered by various events. Nevertheless, the following verbal description
of the sequence of actions that take place for a given memory request helps in understanding
the overall behavior:
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Figure 2: Cache automaton
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" Read hit: When a processor performs a read operation that hits in its private cache, the
cache simply sends to the processor an acknowledgment token that contains the desired
data (the data can be either in PC. PD. or S state). If the entry is in an intermediate
state (WA, WB, or VU) then the access is rejected, and the cache sends a rejection token
to the processor. which will then reissue the request later.

" Write hit: If the entry is in a private state, then it is updated with the new value and the
state is changed to PD if it were originally in the PC (clean) state. If the entry was in S
(shared) state, then the write is broadcast by sending a token to the output fifo buffer and
entering the WB (wait to obtain the bus) state. At this point if another acknowledgement
token with the same address stamp is detected on the bus. the corresponding value updates
the cache entry and an acknowledgment token is sent to the processor. The cache entry gets
then into the S (shared state) again. If not. the request is eventually sent onto the bus and
the VA state is entered. Two things may then happen: Either the acknowledgment token
appears on the bus. or an update acknowledgment token appears. The second case occurs
when the processor write was sent while an outstanding write-back was being processed.
In this case 1 the processor which was responsible for this update. and which therefore
was in the PD or WU state, has killed the regular acknowledgment token. and the update
acknowledgment is to be taken into account instead. As a result, the write operation by
our original processor will never be observed. In case the acknowledgment token does
appear on the bus. any processor with a different number and which owns a copy of the
same address in a stable state (PC. PD. S) must notify this cache by turning the shared
signal on (several processors can do this concurrently). In this case, the cache entry gets
into the S state. If the shared wire is not turned on then the cache entry gets into tiw
PC state. Then an acknowledgment token is sent to the attached processor. Finally, if
the write hit occurs during an intermediate state (WA. WB. WU) then a rejection token
is simply sent to the processor.

* Read miss: In case the corresponding entry is in a dirty state. then the replacement cannot
occur until the old cached date is written back. An update token is sent to the output
fifo buffer. the WU state is entered and a rejection token is sent back to the processor so
that it reissues its request later. While in the WU state, any request to the corresponding
address that appears on the bus is cancelled. until the update acknowledgment is received
and the S state entered. If the old data is in a PC or S state then the replacement can
occur. a read token is sent to the output buffer to request the data from the memory
and the WB state is entered. As in the previous case. if any acknowledgement token that
carries the same address stamp appears on the bus, it is accepted as acknowledgment and
the cache enters the S state. Otherwise, the token is sent on the bus and the WA state is
entered. The rest of the protocol is as for the write hit.

" 1"rite miss: as for Read miss

'Such a strange case is possible because of buffering: Processor P, was in WB state, and meanwhile processor
P, got the same entry from the memory but in the PC state because P. not being in a stable state. hadn't turned
the shared signal on. By the time the write token from P, appeared on the bus. P, got into the PD state. P,
is then responsible for updating the memory and it cancels P's request, gets the next bus cycle and sends an
update token bypa-.ssing its fifo buffer.
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Event/State E WUOX WAOX WBOX SOX PCOX PDOX
A, :IOX read token sent rejection token sent to processor data fetched from cache and token sent to

to output fifo processor

P, WaX write to- rejection token sent to processor write token cache updated and token sent
ken sent to out- sent to out- to processor
put fifo put fifo

P. :,WaX read/write to- rejection token sent to processor read/write token sent to rejection token
ken sent to out- output fifo and cache up- sent to proces-
put fifo dated with new address sor and update
and cache up- token sent to
dated with new output fifo
address

P: ROX ignored kill sent ignored kill sent
P, W@X ignored kill sent ignored state changes

but cache data
not updated

Pi: Ra,Wa@X impossible cache up- impossible
dated and
token sent
to proces-
sor

P: UaGX impossible cache up- impossible
dated and
shared sig-
nal sent

P, Ra,WaOX ignored kill sent ignored cache updated, shared signal sent kill sent
P1: UaGX ignored impossible cache updated impossible cache I impossible

I _ I I updated

Table: Actions taken by the cache upon bus and processor events.

2.3 Correctness proofs

Most currently published cache protocols are not formally proved because of their simplicity.
Nevertheless our cache is substantially more complex than, for instance, the standard snoopy
cache, and therefore one can think of many complex scenarios that might fool the automaton.
We first made sure that the automata would never end up locked in a waiting state and for that
purpose proved the following lemma:

Correctness lemma 1 (Deadlock free automaton) For each transaction token sent to the
output fifo buffer there is a unique acknowledgment token that travels on the bus (the automaton
will therefore never stay in a waiting state)

Proof: The proof of this statement is done by studying each type of bus transaction:

* Pi : U@X is sent either directly onto the bus or to the fifo buffer, but it its guaranteed
to be sent on the bus. It then can only be acknowledged by the corresponding update
acknowledgement token.

* Pi : R, W@X is sent by the processor to the output fifo buffer then (a) it does not
get to the bus, in which case it was acknowledged by a token stamped with the same
address (b) it does get to the bus but get killed in which case there is another processor
that started an update access and the corresponding acknowledgment token has not yet
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appeared on the bus. An update token is always acknowledged, therefore the access will
be acknowledged as well. (c) it does get to the bus and does get to the memory without
being killed, the memory will then issue an acknowledgment token. This token is the
only one that will be accepted by the automata: since the access was not killed, there
was no outstanding updates by the time the request was sent on the bus. Therefore, any
update acknowledgement that may appear on the bus correspond to subsequent update
requests, and since the memory is a fifo server, will not appear on thQ bus until the regular
acknowledgment token is sent (no unexpected acknowledgment will appear on the bus).

Correctness lemma 2 (Correct state semantics) If a cache entry is in a private state (PC
or PD) then no other cache can be in a stable state (PC, PD or S) at the same time (relatively
to the global clock provided by the bus cycles).

Proof: Trivial when considering the cycle at which the cache first got the data (which necessarily
involved a bus access).

Correctness lemma 3 (Sequential consistency) The system of caches is sequentially con-
sistent.

Proof: this proof which relies on the formalism presented in the next section, is given in section
3.4.

2.4 Further improvements

The cache that we described up to now supports a very simplified set of memory instructions.
In particular it does not provide any Test-and-set type of operations, which makes it inefficient
when supporting a programming language that uses storage locations for synchronization like
Multilisp. Furthermore it does not support any kind of memory error handling, which is essential
if a large system with a virtual address space is used. We have nevertheless investigated what
would be involved in modifying our cache to work in a real machine:

" Test-and-set instructions: in Multilisp such synchronization is performed with the use of
a Full/Empty bit that is attached to each memory location [7]. Standard Read/Write
instructions are then extended to a variety of operations such as read if location is full or
write and leave location empty . These operations can actually in most cases be treated
as a simple Read or Write operation, but they no longer allow "on the fly" optimizations.
The cache automaton should therefore be modified as if the WB state were projected onto
the WA state, and the actions taken by the cache manager for Reads that side-effect a
memory location should be treated as writes. The new system obtained is then write-
ordered. In fact, with added complexity to the cache hardware, it turns out that "on the
fly" optimizations can still be performed, but this is beyond the scope of this paper.

" Virtual memory features: For a virtual-address cache, an additional acknowledgment token
must be introduced and recognized by the automaton in order to treat memory errors. The
current automaton should still work as long as the processor that swaps memory pages in
and out operates on the same bus with the same protocol provided that memory errors
are treated by the cache automaton as normal acknowledgments.
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3 Memory consistency, a theoretical framework:

For efficiency purposes, constraints regarding the ordering of transactions may get relaxed,
leading to a more efficient use of the hardware (more parallelism) but getting also easily subject

to protocol design errors, and therefore end with incorrect program execution. The purpose of

this study is to review certain properties regarding the ordering of memory transactions in a

multiprocessor system, which are commonly mentioned to satisfy the usual programming models.

A formalism, using partially ordered sets, is proposed to define cache coherence, sequential

consistency, and write ordering in a unified context. Along with this formulation, a theorem is

provided and proved, aimed at helping the designer in proving that a given system satisfies any

of the above properties.

3.1 On formalizing memory transactions

Running a given parallel program on a multiprocessor system may lead to several different exe-
cutions. An execution is characterized by its Trace, which is the partially ordered set (possibly

infinite) of all memory transactions that are performed in the course of the run. Although we
are rarely interested in a single trace, a legal execution is often defined as a class of traces,

characterized by some constraints. These constraints have to do with both the sequential se-
mantics of the programming language (which will define the behavior of individual processors),
and its parallel semantics, which will impose constraints on the order of the operations in order
to preserve the sequential aspect (data dependencies, sequential sections) of the execution of
parallel programs. In this section we define several partial ordering relations on the set of all
transactions performed by the system. These orders reflect the usual dependencies between
memory instructions, within subsets of all memory transactions (order at a memory location
... ). To achieve this goal, we need first to define the following objects:

" T is the set of all memory transactions performed by the system

" R- is the subset of Read transactions : 1Z C T

* W is the subset of Write transactions : V C T

" Pi denotes a Processor/Cache ensemble. P E P = [0, Maxproc]

" Aj denotes a global memory address. Aj E A = [0, Maxadr]

" V denotes the set of all possible values that can be stored in a memory location.

* 11 : T - P is a function that canonically projects the set of transactions on the set of
processors. (Each transaction X is performed by the unique processor II(X).)

A : T -- A is a function that canonically projects the set of transactions on the set of
Addresses. (Each transaction X is performed on the unique address A(X).)

" E : T -- V is a function that canonically projects the set of transactions on the set of
values (Each transaction X reads or writes the unique value E(X).)

* Qp, : T - {0,1} defines a family of characteristic functions that model the fact that a
write transaction may or may not be observed 2 by the processor Pi .

2An observation is to be defined by the designer. Nevertheless it is assumed that all the transactions performed
by a given processor are observed by this same processor.
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We assume that within a processor Pi there is some kind of global synchronization (a single
clock, or all memory acknowledgments arrive via a single stream, or there is a single instruction
decode unit, etc, ...). Thus, even in a multi-threaded processor or in a processor with multiple
memory ports, we assume that only a single instruction can be completed at a given clock cycle.
Pi executes instructions in some sequence. Therefore, it can be assumed that there is a total
order on the subset lH(Pi ) of all memory transactions performed by Pi . We denote this total
order <p,.

A given location Ai in memory observes the requests performed on it in some order. For
instance, in a system where a given address is always mapped to the same actual location (no
cache for example), all the transactions involving Aj are serialized at the memory cell, and
therefore are totally ordered. Nevertheless, this order is more often only a partial order (for
instance where caches maintain copies of the contents of the location in memory). Let <A, be
this order defined on A- 1 (Aj ). This order is likely to be consistent with <p, (If 1 is performed
before r2 by processor Pi both at the address Aj , then r1 <A, -2) but this is not always the
case (for instance if the communication network does not preserve the order of messages).

Finally, there is an order derived from the programming language itself. The latter allows
sequential sections, and therefore all the instructions within such a section are totally ordered.
In a language such as Multilisp [5], there is a notion of parent and child tasks, which also impose
a hierarchy and therefore a partial order (transactions performed by a child are subsequent,
greater, than those from the parent task that were performed before the task creation. Trans-
actions from the parent task that are subsequent to the child creation are greater that any
transaction performed by the child). Let <Prog be this order defined on the entire set T . The
above discussion can be summarized as follow:

" <pi is a total order on the transactions performed by the processor P.

" <A., is a partial order on the transactions performed at the address Aj .

" <prog is a partial order on the transactions implied by the ordering of instructions within
the program.

3.2 Defining cache consistency

In this section, various consistency properties are studied. Their usual definitions are interpreted
and reformulated in different terms, in order to obtain a unified formulation of these properties.
The general idea is that a consistency property is equivalent to the existence of some order on
the set of all transactions resulting from a given execution.

Definition 1 (Cache coherence) A system of caches is said to be coherent with respect to
block A if each cache in the system observes all modifications of A in the same order.

This definition given in [2] relies upon the meaning of "to observe" and therefore comes with
the following definition: A modification to a block A is observed by cache Ci if any subsequent
read by processor Pi will return the newly written value.

This latter definition assumes an obvious notion of "subsequent" among the transactions,
which implies the existence of some global order. Along with the definition of cache coherence,
this even appears badly formulated since cache coherence is about a notion of a global order.
Moreover, the definition of cache coherence states that "all modifications" are observed which
is not the case in most cache systems. As a matter of fact, in some cases each processor only
observes the order of its own transactions. Thus, we prefer the following alternate definition,
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which derives from a reordering of words in the previous formulation while remaining faithful
to its spirit.

Definition 2 (Cache coherence revisited) A system of caches is said to be coherent with

respect to block A if for any execution, there is a total order <-A on the resulting set of all
memory transactions performed at A that satisfies:

* V7l,r2 E A-'(A) such that 3i such that r:5p.r2 = 71_5A72 (The order is compatible
with the order at each processor)

* Vr E A-'(A)f n Z E(sup{w E WnA-l1 (A) such that w <A r} = E,(r) (A read in this
sequence returns the value of the most recent write)

In general this order is not unique. For instance in a two-processor coherent system, an execution
may well give the following two traces3 :

PI:W@X=2 P:R@X=3 (Processor 1)
P2 :W@X=3 P2:W@X=3 (Processor 2)
which may lead to several coherent total orders:
1/ P1 :W@X=2 P2:W@X=3 PI:R@X=3 P2 :W@X=3
2/ P2 :W@X=3 PI:W@X=2 P2:W@X=3 PI:R@X=3

Definition 3 (Sequential consistency) A system is sequentially consistent if the result of
any execution is the same as if the operations of all processors were executed in some sequen-
tial order, and the operations of each individual processor appear in this sequence in the order
specified by its program.

Sequential consistency is a property which relies upon the programming model, because it in-
volves "program order" which is a notion that derives completely from the semantics of the
programming language. Any program that fits into this model may lead to several different
executions (some may terminate some may even not) but as long as the resulting trace can
be ordered such that there is a sequential execution which leads to the same ordered trace,
sequential consistency is satisfied. An alternate definition is:

Definition 4 (Sequential consistency revisited) A system is sequentially consistent if for
any execution, there is a total order -<eqon the resulting set of all memory transactions that
satisfies:

" Vr 1 ,r 2 E T such that r1 <o,,0gr2  = 1 !5,eqr2 (The order is compatible with the order
imposed by the program)

" Vr E A-'(A) n 7Z E(sup {w E W such as o _,eqr} = E(r) (A read in this sequence
returns the value of the most recent write)

Lemma 1 Definition (3) and (4) are equivalent.

Proof : (1) Definition (3) implies definition (4): Definition (3) implies the existence of a total
order on the set of all instructions and therefore on the set of all memory transactions. This
order is compatible with program order since it derives from a sequential execution of the pro-
gram. For the sme reason, the value returned by a read is the value Written by the last write
in the sequential execution order.

3Nntation: P:T@A=V means that processor P performs the transaction T (Read or Write) at the address A
resulting with the value V (being Read or Written).
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(2) Definition (4) implies definition (3): In order to prove that the existence of the order
_<oeqimplies the existence of a sequential execution of the program, we will construct this execu-

tion by induction. We assume that instructions are also fetched from the same memory system
as data although this is not necessary. The parallel run that leads to the totally ordered trace
T starts with the system in some state. Since <,eqrespects program order, the first read can
perfectly be the first instruction executed in the sequential run. Suppose now that the sequential
execution that leads to the same trace T up to the step k is built, let us prove that this execution
can be completed to produce the transaction Tk+l . In the parallel run, Tk+1 was executed by
some processor Pi. Up to this point processor Pi was able to perform the same instructions
and the same memory transactions as in the parallel run. In particular the task to which the
transaction Tk+1 belongs is in the same state as it was during the parallel run just before per-
forming it (the state of the task which consists in the contents of some part of the memory and
some registers like the Program counter, depends only on the sequence of data it has fetched
from the memory up to the point where it is able to complete the next instruction). The new
program counter is calculated using previously read data within the current task. Therefore the
transaction Tk+1 can be performed. It will be performed at the same address with the same
value. Indeed, if this transaction is a write, both the address and the value written depend
only on the current state of the task which is the same as for the parallel run. If this is a read
transaction, the value read is the value that was written the most recently in the <,eqsequence.
Since our sequential execution has already performed the transactions prior to step k, the value
read will be the same as the one read during the parallel run. (One should note that this proof
does not require that the programming model be deterministic).

Often, program order is the coalition of two orders : (1) the order of sequential threads
(2) a data-flow order (synchronization variables, child tasks created by putting a token in some
queue etc... ). The latter order relies only upon the values involved in the memory transactions.
Therefore the second condition that appears in definition (4) already guarantees that the data-
flow order is respected. Thus, as long as each processor in the system executes instructions
according to the order imposed by the sequential threads, program order is respected. For the
case where program order is composed of the above-mentioned two orders, definition (4) can be
reduced to:

Definition 5 A system is sequentially consistent if for any execution, there is a total order
Sseq on the resulting set of all memory transactions that satisfies:

" Vi Vr l ,r 2 E II-1 (P) such that rl5poar2  = ri seqr2 (The order is compatible with
the order imposed by the program on the transactions performed by each processor)

" Vr E A-I(A) n R E(sup {w E W such that w <,,,r} = E(r) (A read in this sequence
returns the value of the most recent write)

Sequential consistency does not imply cache coherence as it may appear at first. Indeed, nothing
proves that the orders <p, of each processors transaction is respected by the global order <,,q.
For instance in a multi-threaded processor system, <,eqmay perfectly respect <prog but not the
<P, .

Definition 6 (Write ordering) A system is write ordered if all caches observe all writes in
the same order.

Definition 7 (Write ordering revisited) A system is write-ordered if for any execution, there
is a total order <wrieon the resulting set of all memory transactions performed that satisfies:
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* VrT,r 2 E T such that 3i / rT1 5,,r2  =0, 71 <Writer2 (The order is compatible with the
orders of each processor)

" Vr E A- 1 (A) f 71Z E(sup {w E A- 1 (A)W such that w <Writer}) = E(r) (A read in this
sequence returns the value of the most recent write)

Assuming that each processor executes instructions in program order, then write ordering implies
sequential consistency. The converse is not necessary true.

In this section we have assumed that observed order and processor order were the same. A
stronger meaning can be given to "observed order", but it must always encapsulate processor
order. Definition (2) and (6) can then be restated by replacing "processor order" by "observed
order". The system will then be coherent or write ordered relatively to this new notion of
observation.

3.3 On Proving Cache Consistency

The computer architect can usually easily prove that the basic processor respects program order.
Further properties of consistency may be difficult to prove. The purpose of this section is to
provide a technique for proving consistency properties. The computer architect, by designing
the system, imposes some constraints on the way that memory transactions are performed. In
particular, by putting bottlenecks (that will force the serialization of some messages) in various
places, partial orders are imposed on transactions. By chosing an appropriate "consistent" set
of partial orders, it is sometimes possible to build a total order that satisfies all of the partial
orders. The following characterization provides a necessary and sufficient condition.

characterization 1 (Consistent set of partial orders) Given a set T of objects and a fi-
nite family {<i} of partial orders, there is a total order that respects all of them if and only if
any sequence : X1 <il X2 <i2 ... <ik xk+i (chain of objects where two adjacent elements are
comparable by some order) does not loop (that is : Xk+l <ikl, x1 is impossible).4

Often a partial order that is considered is a total order on the subset of objects to which it
applies (for example, the order <p, applies only to the transactions performed by Pi but is a
total order on this subset of T ). If all the orders considered are such, then the following simpler
characterization can be used :

characterization 2 If any sequence x, <i, X2 <i2 ... <i Xk+1 where each order <j appears
at most once is not a loop then there is a total order that respects each partial order.

The work of the designer is then reduced in both imposing some orders in his system and then
finding a family of consistent partial orders. For instance, if program order is respected by
each processor and if cache coherence is already proved, write ordering can be proved simply
by showing that the family composed of {<p,}i (orders on the transactions of Pi) and J<a}J

(order due to the coherence of the system relatively to each address Aj) is consistent.

3.4 Proof of lemma 3

We first prove that there is a total order on the set of all memory transactions which is compatible
with the order of the program:

4 for a more precise formulation, see theorem (2).
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" We can define a bus order <bu, using the order of the acknowledgment tokens. It is an
order on all the transactions that were sent onto the bus but it can also be extended to all
the transactions that were sent into an output fifo buffer. Indeed, if several transactions
are acknowledged by the same token before they get onto the bus, they will simply be
considered as being simultaneous.

" The order of each processor is defined as being the order of the acknowledgment tokens
that arrive in its input buffer. This order can be extended to local program order. In
fact, all write transactions that are acknowledged before they get onto the bus are never
observed, and the write that corresponds to the bus acknowledgment is observed instead.
We simply extend our order to insert the nonobserved write just before the observed one
(no read operation could have been performed in between). We call this extended order
<i which, since each processor executes each thread in program order, is compatible with
the program order.

It is easy to see that the bus order is compatible with each of these local orders (T1 <bu T2 and
T2<_iT is impossible). Further it is also easy to see that any chain of three elements where each
order appears only once cannot be a loop. Indeed, suppose we have T1 _1 T 2 < 2T 3 _3 T then by
definition, T1 and T2 appeared in the same input buffer, and T2 and T3 both appeared in another
input buffer. Therefore, T2 is a bus transaction, and so is T3 (because T3 and T, appeared in
a third input buffer). But the bus order can then compare these three transactions, and since
it is a total order it implies that T , =bus T2 =bus T3. That is that all three transactions were
acknowledged by the same bus token. In the exact same way we can prove that there is no
loop of length k, therefore there is a total order on the set of all memory transactions that is
compatible with each order <i. This < order is therefore compatible with program order.

The second point that should be proved in order to demonstrate sequential consistency is
that in the sequence defined by the above-constructed total order, each read returns the value
of the most recent write. This is proved by analyzing each state in which the entry could have
been at the time (relative to the bus clock) of the read. We proceed by cases:

9 (PC) is the state of the entry: The automaton enters in the PC state only after a bus
transaction. The value read is then the value that was written in the cache either by the
most recent (relatively to <i) acknowledgment token (Tal) that came from the bus (in
which case it was in the WA state just before), or by the attached processor (in which case
it was in the PD state just before, and a token T, = Pj : W@X being detected on the bus
forced the automaton back to PC).

- Assuming the first case, between the moment that Tal arrived and the time of read,
no other acknowledgment stamped with the same address appeared on the bus (oth-
erwise, the automata would not have stayed in the PC state). Therefore, Tal is also
the most recent acknowledgment relatively to < order. The lemma (2) proves that
relatively to the bus clock no other processor has written to this address since Tal has
traveled on the bus. The current read then reflects the last write (Tao) in bus order
(since the memory acts as a fifo). Suppose that some other processor has performed
a write locally between Tao and Tal relatively to < putting its automata into the
(PD) state. If the request token T, that corresponds to Tal was sent after this event
then the write back would have worked because Pj : R@X would have been detected
and Tao would not be the most recent write. If T, was sent before and Tal sent after
the local write, then the write back would have also worked because Pj : Ra, Wa@X
would have been detected.
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-Assuming the second case. the value read would be the most recent one relatively to

-i, since the last recorded modification Wo was performed by the attached processor
itself. In any case, as previously, the last acknowledgment token Tal in bus order
stamped with the corresponding address is the one that put rthe automata into the

PC state before it went into the PD state. At the corresponding cycle no other pro-
cessor had a copy of this location, therefore any subsequent foreign writes would have
appeared on the bus. The only write that appeared on the bus (which is responsible
for the transition PD to PC) is not yet acknowledged, therefore the attached proces-
sor is the only one that could have written the location since Tal in < order. WO is
therefore the most recent write in < order.

* (PD) is the state of the entry then, the proof is exactly as for the second case of the PC
state.

" (S) is the state of the entry, then the value read is the one that was recorded in the cache
by the last bus acknowledgment token Tal in both bus order and processor order (the
automata can enter the S state only after such a token). This token could have been either
an update acknowledgment token or a regular acknowledgment token.

- Assuming the first case, Tal would then be the last acknowledged write in bus order.
Suppose that some other processor Pi made a local write WO. In <j order W0 was
preceded by a bus acknowledgment token Tao that is responsible for Pi's automata
entering the PC state. If we have Tao: TaliWo then Tal would have put Pils
automata into the S state and W0 would not be a local write. If Tal Tao then Tal
would not be tha last acknowledged token in bus order. Therefore Tal is also the
last write in < order.

- Assuming the second case, and Tal being the last acknowledged read token in bus
order (see above if it were a write token). The above proof shows that no local write
can be between Tal and the current read in < order. Further at Tal's bus cycle,
another processor P had detected the token on the bus and since the shared line
was activated, was in a state PC or S. Pj's automata has entered the state PC or S
upon a bus acknowledgement token Tao that is prior to Tai in bus order. We can
assume that this is the most recent token stamped with the same address prior to
Tal, otherwise we would have just considered the corresponding processor. If Tao
is a write acknowledgment token, it is obviously the most recent acknowledged write
in < order (the proof is similar to what was just done above). Tai would therefore
report the value obtained from the memory which is the one written by Tao, the
proof is then complete is this case. If Tao is a read acknowledgment token, then we
can finish our proof by induction: Suppose that we have proved that any read prior
to the current one in < order returns the value of the most recent write. Then we can
apply the induction to Tao and we know that Tao get's its value from the memory.
Since we already know that there is no writes between Tao and the current read in
_K order, we are sure that Tal returns also the same value as Tao which is the last

written value.

4 conclusion

We have shown in this paper how the classical Snoopy cache protocol can be extended to
accommodate the needs of a multi-threaded processor connected to the memory via a split-
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transaction bus. This was achieved by using buffered accesses which required adjoining one state
to the classical automaton, to indicate to the requesting processes that an access is currently
being performed. Further, the non-atomicity of the transactions on the bus required another
state to safely perform the write-back operations. Finally, for the sake of optimization we have
added another state that allows certain buffered accesses to be acknowledged without being
even sent on the bus simply by taking advantage of the other transactions passing on the bus.
Our contribution to cache protocols resides in having studied this particular combination of
processor/memory requirements, and to our knowledge this is the first published work that
addresses the problem of efficient caching on split-transaction buses. Nevertheless, this quite
specific cache can itself be rather easily extended to work with many communication media that
use non-atomic transactions. In fact, in the course of our project we have adapted our cache
automaton to work with a communication medium that is a combination of an interconnection
switching network and a split-transaction bus (for broadcasts). In the latter case, part of the
state information was kept in the memory (a very simple case of a directory scheme).

It appeared that the inflation in the number of automaton states, combined with an increased
number of transition-triggering events (due to non-atomic transactions) made the whole design
fairly complex, and therefore vulnerable to many errors. The need for satisfactory proofs,
particularly to convince ourselves that our system achieved reasonable consistency, lead us to
reexamine the problem of cache coherency. We found that the classical statements of consistency
formulated in natural language were subject to many misinterpretations as the system to which
they were applied got more complicated. This was a motivation for developing a more uniform
formulation, based on partial orders on the set of memory transactions, that we used to re-state
the classical definitions of various consistency properties. We found this formalism useful for
understanding how to serialize the operations in our design, and it turned out to be a valuable
guide for proving that our system was sequentially consistent.
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6 mathematical appendix

Given a countable set on which several partial orders are defined, the following section gives
a sufficient condition, that guarantees the existence of a total order respecting all the partial
orders.

Definition 8 Let X be a set and a thread be a pair (), <) where D is a subset of A' and < is
a total order on D. < has a canonical extension as a partial order on X, and V will be called
the domain of <.
Let A be a countable set, on which a finite number k + 1 of threads (Vi, <i) are defined. We

will assume that X = Uieo,k]i

Definition 9 A chain in X is a finite enumeration ' C [O,m] -X A such that:

Vi E [0, m- 1] 3j E [0, k] such that: C(i) _ C(i+ 1)

Cm(X) is the set of chains of length m + 1, C(X) = UmIENCm(X) is the set of all chains of
X.

Definition 10 E(X) is the set of all enumerations that respect chaining in X, and therefore
partial ordering. i.e. the set of all injections I : A( - X such that

A" E P(N) (power set of N )
Vm VC E Cm(X) , C(O),C(m) E I(A) = I-'(C(0)) < I-'(C(m)) (respect chaining)

The following properties will then be considered:

Property 1 (No accumulation point) VP C X where P n )i is infinite, P is not upper
bounded relative to <i.

Vx E Vi 3pi E P such that x <i pi

This property leads to the fact that VP C X" where P fl Di 0 , there is a smallest element
in P relative to <i (Vi E [0, k] 3pi E P such that Vp E P pi <5i P).

Property 2 (Coherence) A chain cannot be a loop.

Vm E N VC E CA(X) such that:
Vx E [0, m - 11 3j E [0,k] / C(x) <j C(x + 1)
then: Vl E [0, k] C(m) %, C(O)

Property 3 (Connectivity) X is either a finite set, or satisfies the following property of con-
nectivity:

For any element x in X ,the set of elements to which x is not chained, is finite:
Vx E X {y E X / Vm VC E Cn(X) n C(X) such that C(O) = x then C(m) /=y} is finite.

Theorem 1 Let X be a countable set covered by a finite family of threads {(Vhi, -<i)}ie[k] and
satisfying properties (1), (2) and (3). Then there exists a total order on X that respects all the
partial orderings. This order defines a complete enumeration of X.

5An enumeration is an injection which maps a subset of N (set of natural numbers) onto a subset of X.
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Proof: Lemma (1), (2) and (3) (see below) prove this theorem.
One can canonically define an order -< on C(X) that encapsulates all the partial orders <-i

defined on X:

VI, J E £(X) I _- J if and only if:
- Image(I) C Image(J)

- The enumeration J respects the order defined by I
(i < j = ' J-'(I(i)) < J-I(I(j)) )

Lemma 1 If the above properties (1), (2) and (3) are satisfied, then £(,X) is inductive6 .

Proof:

Let S C E(X) be a filtering subset
Let Xs = UiES Image(i) C X

The following properties are true:
(a) There exists a total order <s on the set Xs compatible with all enumerations of S

Proof: Va, b E XS 3 ea,eb E S / a E Image(ea) b E Image(eb). therefore
3e E S such that ea -< e and eb '< e (because S is a filtering subset) and
Vf E S such that a,b E Image(f) : f-(a) < f-l(b) 4* e-1(a) < e-I(b)
because: 3 g E S such that f -< g and e -< g
one can then define: a <s b * e-(a) < e-l(b)
(this relation is obviously an order)

(b) For any subset X, of XS there is a smallest element relative to <s
Proof: Vi E (0,k] such that X, n Di # 0, 3 = Min<,(X, n D,) (by prop. (1))

Because the set of mi is finite and <. is total 3m = Min<s(m)
m is the smallest element of X, relative to <s Indeed:
Vx E X. 3i E [0,k] such that x E Di = x >i mi =* x >s mi _s m

Properties (a) and (b) allow us to define by induction an enumeration E of Xs as follow:
E(O) = Min<,(Xs) and E(k + 1) = Min<s(Xs - {E(O),E(1),..., E(k)})
By construction, the enumeration E respects chaining.

It is obvious that: Image(E) C Xs lets show that: Image(E) = XS
Suppose 3x E Xs such that x V Image(E) then Image(E) is infinite
(if it were finite, then because of the enumeration method Image(E) would be equal to Xs)
By property (3) 3y E Image(E) to which x is chained.
Since S is filtering 3s E S / x,y E Image(s)
Since s respects chaining x <s y and therefore x E Image(E)

Vs E 8 s -< E Indeed:
Image(s) C Xs = Image(E) and,
Va,b E Image(s) such that s-(a) < s-1 (b) #- a <s b and therefore:
E-(a) < E- 1 (b) (because of the construction of E)

Therefore S is upperbound.

Lemma 2 E(X) has a maximal element.

6 A partially ordered set E is said inductive, if any filtering subset is upperbound. A subset S of . is said
filtering if for any two elements z and y in S, there is a third element z in S that is greater than both x and y.
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Proof: by Zorn' Theorem.

Lemma 3 There is a complete enumeration of X which is maximal relative to the order -<

defined on F(X).

Proof: Let E be the enumeration obtained in the above lemma. We will prove that E(N) = X.
Suppose 3x 0 E X such that xogE(N). Then:
Property (1) guarantees that: 3M / Vi E [0,k] Va > M E(a) j xo

Moreover 3m E [0, M] / Vi E [0, k] Vx E E([0, M]) U {xo} E(m) j x
Proof: If not, then (*) Vm / 3i E [0, k] 3y E E([0, M]) U {xo} / E(m) >j y

We can then construct by induction an infinite chain as follows:
Let Yo be a random element of E([O, M]) U {xo} and define y, from Yn-1 as:
Y,-i >an Y, ((*) guarantees the existence of y,)
Since the set E([0, M]) U {xo} is finite, this infinite chain has to be a loop.
This is in contradiction with the property (2).

We can now construct an enumeration of E([0, M]) U {xo} that respect chaining, by induction:

Let E'(0) be such that Vi E [0, k] Vx E E([0, M]) U {xo} E'(0) jx
And E'(n) be such that Vi E [0,k] Vx E E([0,M])- E'([0,n - 1])U {xo} E'(n) jx
(If there are several possibilities, E'(n) will be chosen to respect the order defined by E)
E(min(E-({y / Vi E [0, k] Vx E E([0, M]) - E'([0, n - 1]) U {xo} yix})))

E' can be extended beyond [0, M + 1] by taking the order defined by the enumeration E on
E([M, oo[). E' respects chaining as well, and is strictly greater that E. Which is impossible.

Theorem 2 (Theorem 1 bis) Let X be a countable set covered by a finite family of threads
{(D,<i)}iE[o,k satisfying properties (1) and (2). Then there exists a total order on X that
respects all the partial orderings. This order defines a complete enumeration of X.

Proof: The proof for this lemma is done by induction on the number k of threads involved.
If there is only one thread, the lemma is trivial. Let suppose that theorem (2) is proved for k
threads. The following two cases are to be considered:

(1) Vi, j E [0,k] Difn j is finite

We can then define for all i E [0, k] , mi E EVi such that: mi = max UjE[O,k],j#i (Di n Vj)

Let D>m, = {x E Di / x >j mi} and D<,, = {x E Di / x <i mi}
Since <i is a total order on Di we have: V>,,,, U D<m, = Di and D>m, n D<m, 0

Let X> = UiE[0,kjV>m, and X< = UiE[0,k]D<1i we have:
(a) X> U X< = X (X = UiEro,k] z = UiE[ok](D>, UV<m,) C (X> U X<))
(b) X> fl X< = 0. Indeed:

If x E X> n X< then 3ij E [0, k] such that: x E D>m f D<nm
Then x E A, n Dj and therefore x<_imi and x<jm
Which is in contradiction with the fact that x E D>m,

7Any inductive set has a maximal element.
6A constructive proof for this theorem can also be done
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Since X< is finite, we can apply the theorem (1) to X< with the family of threads
{(X< n Di), <i}i0,eOkl. Therefore there is a total order, and an enumeration on X< that respects
all the partial orders. This finite enumeration can be completed with a standard diagonal
enumeration 9 of X>. (Thanks to the fact that the threads form a partitioning of X>) Because
of property (1), this enumeration reaches all the elements of X<.

(2) 3i,j E [0,k] 'Di l j is infinite

There is an enumeration of i n Dj that respects both <j and <j.
Proof: Let di,o = min (Vi n V1 j) and dj,o = min (Di n Dj)

<i <3

(property (1) ensures the existence of these both smallest elements)
Then di,0 _<i dj,o :5j di,o and therefore by property (2) : di,0 = dj,o
Let dij,o = dio , we can then define by induction the following enumeration:
dij,+l = min ((Di fn j)- Idij,o, dij,1,.. dij,n})

By property (1) again, this enumeration reaches any element of i nf Vj and by
construction it respects both orders. We will denote dij,n by dn.

Let us define the following subsets of )ij = Di U j:
[dj,d,+i[<, = {x E Di / dri x <i d1+1 }
[d,d 1+1[ = w {x E X / 3m E N / 3 Cm E C(X) n .(X) /

Cm(O) E [d,d 1 + [< and Cm(m) E [d,dt+1 [<, and x E Cm([0, m])}
[dr, dt+[= [dt, dt+1 [<, U [d, d1+1[< u[di, d+l [-, U [d, d1+1[j_i. u[dj, d+[j_( U Ad, di+[j_j

(For any two elements of [di,d1+i[ any chain that connects them is also contained in [djd1+1

The above defined set [di,d+ 1 ( is finite:
Proof: By property (1), [dt,dt+i[<, is finite. Let us show that the set of chains which respect

the orders and end in [di,d1+1[<, is finite. Let xo be an element of [dj, d1+1[<i.
If the set of chains ending at x0 were infinite, then there would be an infinite
set xo< of elements of A chained to xO.
Therefore, 3a E [0, k] such that x0 < n V, is infinite, and consequently x0 is an
accumulation point. This is in contradiction with property (1). This proves that
the set XO< is finite and so are [d, d1+1[i_j and [d, d1+ 1[

VDij C Vij = U/EN [dt,d 1+1[

Properties (1), (2) and (3) are satisfied by f with the family of threads {(1'7ij n Ea), <} jO [,k]
Proof: Properties (1) and (2) are directly derived from the hypotheses.

Let x E Vii , 3a such that x E [d., d.+ 1 [
Then z is chained to any y E [dp,do+l [ where 0 > a
(x is chained to d,+i which is chained to do which is chained to y)
Therefore the set of elements to which x is not chained is included in Ut<,0[di, d+1[
which is finite. This proves property (3).

9 We start by numbering the first element of each thread, and then the second element of each thread etc,
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Theorem (1) ensures the existence of a total order <ij on Ti-' that respects all partial orders
and which defines an enumeration. In order to bring the proof to completion we now need to
apply the induction hypothesis to the set X with the threads {(7-j, <ij), (j, <L)L[0,k]-.i)} •
Property (1) is satisfied by hypothesis for A1 V1 E [O,k] - {i,j}, but also for (T-ij, <ij) because
of the enumeration defined by the order <ij

Property (2) stands for [X; {, <23),(D 1 , <L)1Et0,k]-{idj}]-
Proof: Suppose there is a loop Cm. One can assume that C, has the smallest possible

length. Then, each order relation <a appears only ones in the chain. Indeed:
If 3k,l E [0, m],k < 1 such that Cm(k) <, C,,(k + 1) and C,(1) <, Cm(l + 1)
(a) if Cm(k)<aCm(l + 1) Then the chain obtained from Cm by removing

the elements Cmi(k) to Cm(l + 1) is also a loop and is shorter
(b) if Cm(k)>aCm(l + 1) Then the chain obtained from Cm by keeping

only the elements Cm(k + 1) to Cm(l + 1) is also a loop and is shorter.

<ij is involved in the loop, otherwise Cm would be a loop in (X, (Di, <i)iE[Ok]).

Therefore, 3! E [0,m] such that C,(l) <ij Cn(l + 1 mod m)
Since C,(1) , Cr,(I + 1) E 7 then
3a, b Cm,(l) E [da,da+l[ and Cm(l + 1) E [db,db+l[
(a) a = b is impossible, because the enumeration of D which was constructed with

theorem (1) respects all the chains that connect two elements of [da, d,+i[
(b) a < b is impossible, because then Cm(l) would be chained to Cm(l + 1) via orders

chosen from the original set of orders: (<i)iE[O,k]
Therefore C, would be also a loop in (X, (Di, <i)iE[O,k]).

(c) a > b As case (b).
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